Abstract

Predicting the pharmacokinetic (PK) time course of a subcutaneously (SC) administered novel therapeutic protein using in silico approaches offers an opportunity to streamline the drug development process by facilitating selection of starting and target doses in initial human trials. Herein, we propose a workflow for predicting the human exposure time course following SC administration. Leveraging knowledge obtained following both intravenous and SC administration in monkeys, this workflow employs the development of a whole body physiologically-based pharmacokinetic (PBPK) model incorporating vascular circulation, lymphatic uptake and both renal and non-specific clearance mechanisms to predict the PK of a novel pegylated peptide. Optimization of the model was initially performed in monkeys, after which the model was scaled up to human proportion. Inclusion of a SC depot compartment allowed for precise simulation of the SC time course in monkeys. Simulated human exposure after SC administration was within approximately 20 % of the observed values and successfully predicted the time course of two subsequent dosing levels. This workflow represents one of the first publications of a PBPK workflow to predict the time course of a SC administered therapeutic protein based off of a single, non-human primate species and shows promise in facilitating the dose selection in first-in-human dose escalation studies for novel protein therapeutics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call