Abstract

This and the companion article summarize linear and nonlinear structural identification (SI) methods using a pattern recognition technique, support vector regression (SVR). Signal processing plays a key role in the SI field, because observed data are often incomplete and contaminated by noise. Support vector regression (SVR) is a novel data processing technique that is superior in terms of its robustness, thus it has the potential to be applied for accurate and efficient structural identification. Three SVR-based methods employing the autoregression moving average (ARMA) time series, the high-order AR model, and the sub-structuring strategy are presented for linear structural parameter identification using observed vibration data. The SVR coefficient selection and incremental training algorithm have also been presented. Numerical evaluations demonstrate that the SVR-based methods identify structural parameters accurately. A five-floor structure shaking table test has also been conducted, and the observed data are used to verify experimentally the novel SVR technique for linear structural identification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.