Abstract

In speech analysis, the voiced-unvoiced decision is usually performed in conjunction with pitch analysis. The linking of voiced-unvoiced (V-UV) decision to pitch analysis not only results in unnecessary complexity, but makes it difficult to classify short speech segments which are less than a few pitch periods in duration. In this paper, we describe a pattern recognition approach for deciding whether a given segment of a speech signal should be classified as voiced speech, unvoiced speech, or silence, based on measurements made on the signal. In this method, five different measurements are made on the speech segment to be classified. The measured parameters are the zero-crossing rate, the speech energy, the correlation between adjacent speech samples, the first predictor coefficient from a 12-pole linear predictive coding (LPC) analysis, and the energy in the prediction error. The speech segment is assigned to a particular class based on a minimum-distance rule obtained under the assumption that the measured parameters are distributed according to the multidimensional Gaussian probability density function. The means and covariances for the Gaussian distribution are determined from manually classified speech data included in a training set. The method has been found to provide reliable classification with speech segments as short as 10 ms and has been used for both speech analysis-synthesis and recognition applications. A simple nonlinear smoothing algorithm is described to provide a smooth 3-level contour of an utterance for use in speech recognition applications. Quantitative results and several examples illustrating the performance of the method are included in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.