Abstract

In distributed systems, resource prediction is an important but difficult topic. In many cases, multiple prediction is needed rather than only performing prediction at a single future point in time. However, traditional approaches are not sufficient for multi-step-ahead prediction. We introduce a pattern fusion model to predict multi-step-ahead CPU loads. In this model, similar patterns are first extracted from the historical data via calculating Euclidean distance and fluctuation pattern distance between historical patterns and current sequence. For a given pattern length, multiple similar patterns of this length can often be found and each of them can produce a prediction. We also propose a pattern weight strategy to merge these prediction. Finally, a machine learning algorithm is used to combine the prediction results obtained from different length pattern sets dynamically. Empirical results on four real-world production servers show that this approach achieves higher accuracy on average than existing approaches for multi-step-ahead prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.