Abstract

The main responsibility of the anterior cruciate ligament (ACL) is to restore normal knee kinematics and kinetics. Although so far different research has been carried out to measure or quantify the stresses and strains in the ACL experimentally or numerically, there is still a paucity of knowledge in this regard under different flexion angles of the tibiofemoral knee joint. Understanding the stresses and strains within the ACL under various loading and boundary conditions may have a key asset for the development of an optimal surgical treatment of ACL injury that can better restore normal knee function. This study aimed to calculate the stresses and strains within the ACL under different flexion angles using a patient-specific finite element (FE) model of the human tibiofemoral knee joint. A patient-specific FE model of the human tibiofemoral knee joint was established using computed tomography/magnetic resonance imaging data to calculate the stresses and strains in the ACL under different flexion angles of 0, 10, 20, 30, and 45∘. Although the role of the flexion angle in the induced stresses and strains of the ACL was insignificant, the highest stress and strain were observed at the flexion angle of 0∘. The concentration of the stresses and strains regardless of the flexion angles were also located at the proximal end of the ACL, where the clinical reports indicated that most ACL tearing occurs there at the femoral insertion site. The results have implications not only for understanding the stresses and strains within the ACL under different flexion angles, but also for providing preliminary data for the biomechanical and medical experts in regard of the injuries which may occur to the ACL at relatively higher flexion angles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.