Abstract

The human aorta undergoes complex morphologic changes that indicate the evolution of disease. Finite element analysis enables the prediction of aortic pathologic states, but the absence of a biomechanical understanding hinders the applicability of this computational tool. We incorporate geometric information from computed tomography angiography (CTA) imaging scans into finite element analysis (FEA) to predict a trajectory of future geometries for four aortic disease patients. Through defining a geometric correspondence between two patient scans separated in time, a patient-specific FEA model can recreate the deformation of the aorta between the two time points, showing pathologic growth drives morphologic heterogeneity. A shape-size geometric feature space plotting the variance of the shape index versus the inverse square root of aortic surface area (δ𝒮 vs. ) quantitatively demonstrates the simulated breakdown in aortic shape. An increase in δ𝒮 closely parallels the true geometric progression of aortic disease patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.