Abstract

In acetabular dysplasia, the cartilaginous roof on the acetabular side does not fully cover the femoral head, which may lead to abnormal stress distribution in both the femoral head and pelvis. These stress changes may have implications to the adjacent sacroiliac joint (SIJ). The SIJ has a minimal range of motion and is closely coupled to the adjacent spine and pelvis. In consequence, the SIJ may react sensitively to changes in stress distribution at the acetabulum, with hypermobility-induced pain. The purpose of this study was to investigate the stress distribution of the SIJ in acetabular dysplasia, and to gain insight into the cause and mechanisms of hypermobility-induced pain at the SIJ. Finite element models of pre- and postoperative pelves of four patients with acetabular dysplasia were created and analyzed in double leg standing positions. The preoperative models were relatively inflare, the sacral nutation movement, SIJ cartilage equivalent stress, and the load on the surrounding ligaments decreased with increased posterior acetabular coverage. Acetabular morphology was shown to affect the SIJ, and improvement of the posterior acetabular coverage may help normalize load transmission of the pelvis and thus improve the stress environment of the SIJ in acetabular dysplasia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call