Abstract

Cell division in Cylindrocapsa geminella, in particular the mode of septum membrane biogenesis, has been studied with the transmission electron microscope. Septum formation takes place in a narrow layer of cytoplasm separating post-mitotic nuclei. First, each daughter nucleus develops a wide cytoplasmic pocket (invagination) containing numerous strands of rough endoplasmic reticulum (ER). Next, a proliferation of rough ER is observed in the equatorial zone of cytoplasm, which invariably contains a small number of widely scattered microtubules. The equatorially aligned cisternae of rough ER produce smooth-membraned vesicles, interpreted as smooth ER, which subsequently coalesce to form the membranous transverse septum. Thus, primary septum formation does not follow any of the two previously known basic cytokinetic patterns in green plants (i.e. plasma membrane furrowing and cell-plate formation), but instead represents a novel type of membrane flow, which effectively bypasses the Golgi apparatus. This pathway of membrane flow has remained largely ignored in current concepts of endomembrane structure and function in eukaryotes. However, it appears to be more widespread than has previously been recognized, especially in autospore-producing green algae and in red algae during the formation of tetraspores. It may represent an evolutionary intermediate type of cell division between the supposedly primitive method of plasma membrane furrowing and the more advanced cell-plate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.