Abstract

In this paper, a path-generating motion control scheme is proposed for a unicycle-type wheeled mobile robot navigating through multiple obstacles. The proposed motion control scheme computes the driving force and rotational torque of the robot in real time that drive the robot to a given goal position while avoiding multiple obstacles. The nonholonomic constraints as well as the dynamic equations of the mobile robot are used in the design of the motion control scheme, where a repulsive potential function is used for obstacle avoidance. In the control design, the Lyapunov stability theorem is used as a mathematical design tool. Under certain conditions, the proposed control guarantees asymptotic stability while keeping all internal signals bounded. The effectiveness of the proposed control method has been shown with realistic computer simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call