Abstract

This paper proposes an autonomous inspection method for steel box girders that uses a wall-climbing robot instead of human workers. According to the 3D operating environment inside the steel box girder, the method proposes a 3D path for the robot to traverse positions to be inspected. The path comprises two alternate sections of the lane’s centerline and U-shaped steering. To realize the robot’s tracking of the desired path, kinematics analysis based on different poses during the inspection was carried out. Corresponding path tracking algorithms were adopted to ensure that the robot moves accurately and efficiently. In addition, for the smooth transition of the two path sections, this method adopts an algorithm of cooperatively controlling the lifting mechanism and the wheel speeds to achieve stable crossing of a 90° concave corner. Finally, experiment results show that the robot can steadily cross 90° concave corner and can steer to the adjacent lane and complete lane inspection along the desired path. The method can realize autonomous inspection for steel box girders using the wall-climbing robot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call