Abstract

Residual cancer cells persist even after targeted therapies, serving as a reservoir for the subsequent acquisition of genetic alterations that lead to acquired drug resistance and tumor relapse. These initial drug-tolerant persisters (DTP) are phenotypically heterogenous with transient phenotypes attributed to epigenetic, metabolic, and cell-cycle changes. DTPs are responsible for the inevitable relapse seen in EGFR-mutant non-small cell lung cancer (NSCLC) despite high initial response to tyrosine kinase inhibitor (TKI) treatment. While past in vitro studies identified diverse drivers of drug-tolerant persistence to EGFR TKIs in NSCLC, the resultant phenotypic plasticity is not well understood and in vivo models of persistence are lacking. In this issue of Cancer Research, Hu and colleagues used patient-derived xenograft models of EGFR-mutant lung cancer treated with the third-generation TKI osimertinib to investigate mechanisms of persistence at the time of maximal response. Using bulk and single-cell RNA sequencing, the authors identified a DTP transcriptional cluster mediated by the key neuroendocrine lineage transcription factor ASCL1, which triggers an epithelial-to-mesenchymal transition transcriptional program. ASCL1 overexpression increased osimertinib tolerance in vitro as well, apparently independent of its role in neuroendocrine differentiation. Interestingly, the ability of ASCL1 to induce persistence was context dependent as this occurred only in epigenetically permissive cells. Overall, these findings contribute to our understanding of DTP heterogeneity seen after osimertinib treatment and provide insights into potential therapeutic targets. See related article by Hu et al., p. 1303.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.