Abstract

SummaryIn many wireless sensor network (WSN) applications, the location of a sensor node is crucial for determining where the event or situation of interest occurred. Therefore, localization is one of the critical challenges in WSNs. Mobile anchor node assisted localization (MANAL) is one of the promising solutions for the localization of statically deployed sensors. The main problem in MANAL localization is that the path planning of the mobile anchor (MA) node should be done so that the localization error in the network will be minimal and that all unknown nodes in the network are covered. This paper proposes a new path planning approach called nested hexagons curves (NHexCurves) for MANAL. NHexCurves guarantees that it will receive messages from at least three non‐collinear anchors to locate all unknown nodes in the network. The proposed model has compared six different path planning schemes in the literature using weighted centroid localization (WCL). In these comparisons, first of all, localization errors of the models are compared using some statistical concepts. Second, the variation of the localization error according to parameters such as resolution (R) and the standard deviation of noise (σ) is observed. Then, with similar approaches, the standard deviation of errors, localization ratio, scalability performances, and finally, path lengths of the models are examined. The simulation results show that the NHexCurves static path planning model proposed in this study stands out compared to other models with high localization error and localization ratio performance, especially at low resolutions, due to its path design. At the same time, the lowest error values according to σ are obtained with the proposed model among all models considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.