Abstract
Path planning for an unmanned vehicle in an off-road uncertain environment is important for navigation safety and efficiency. Regarding this, a global improved A* algorithm is presented. Firstly, based on remote sensing images, the artificial potential field method is used to describe the distribution of risk in the uncertain environment, and all types of ground conditions are converted into travel time costs. Additionally, the improvements of the A* algorithm include a multi-directional node search algorithm, and a new line-of-sight algorithm is designed which can search sub-nodes more accurately, while the risk factor and the passing-time cost factor are added to the cost function. Finally, three kinds of paths can be calculated, including the shortest path, the path of less risk, and the path of less time-cost. The results of the simulation show that the improved A* algorithm is suitable for the path planning of unmanned vehicles in a complex and uncertain environment. The effectiveness of the algorithm is verified by the comparison between the simulation and the actual condition verification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.