Abstract

Using a path integral approach, we derive an analytical solution of a nonlinear and singular Langevin equation, which has been introduced previously by P-G de Gennes as a simple phenomenological model for the stick-slip motion of a solid object on a vibrating horizontal surface. We show that the optimal (or most probable) paths of this model can be divided into two classes of paths, which correspond physically to a sliding or slip motion, where the object moves with a non-zero velocity over the underlying surface, and a stick-slip motion, where the object is stuck to the surface for a finite time. These two kinds of basic motions underlie the behavior of many more complicated systems with solid/solid friction and appear naturally in de Gennes' model in the path-integral framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.