Abstract

Wire and arc additive remanufacturing (WAAR) technology has become a new solution for hot forging dies repair and remanufacturing. In this study, a path generation method is proposed for WAAR of hot forging dies. At first, a WAAR process of the hot forging die is presented, and considering the characteristics of large welding heat input and complex 3D digital model, the hybrid path planning strategy is confirmed as an appropriate strategy for WAAR. The developed hybrid path generation method for WAAR consists of three main steps: determine the direction of the scan line; divide and fill the internal area; and connect the sub-paths. The relatively optimal scanning direction is determined by calculating the length and inclination angle of each line segment in the contour lines, which reduces the possibility of sharp angles. The internal region is divided according to the position of the selected extreme points, and the path space is adjusted to avoid the occurrence of the unfilled phenomenon. At the stage of sub-path connection, some criteria are proposed to reduce the number of sub-paths. At last, the effectiveness and robustness of the proposed method are validated through the planar deposition experiment and the WAAR process of four damaged hot forging dies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.