Abstract

We have developed a novel patch-based cone beam CT (CBCT) artifact correction method based on prior CT images. First, we used the image registration to align the planning CT with the CBCT to reduce the geometry difference between the two images. Then, we brought the planning CT-based prior information into the Bayesian deconvolution framework to perform the CBCT scatter artifact correction based on patch-wise nonlocal mean strategy. We evaluated the proposed correction method using a Catphan phantom with multiple inserts based on contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial non-uniformity (ISN). All values of CNR SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call