Abstract
In this paper, stability of a class of reaction diffusion systems is studied. Conditions on global asymptotic stability of the homogeneous equilibrium are derived based on the diagonal stability of a dissipativity matrix. This work extends previous result on global asymptotic stability from cyclic systems to general systems with interconnected structure. In addition, it reformulates the approach using an input-output formalism that makes the results easier to understand and apply. A biological example from the Mitogen-Activated Protein Kinase (MAPK) system is provided at the end to illustrate the new approach and the main result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.