Abstract

This paper exploits amplitude modulation and demodulation to achieve a passive wireless ultrasound pitch–catch system consisting of a wireless interrogator and a combination of a wireless actuator and a sensor mounted on a structure. The wireless interrogator operates in two modes, i.e. the generation and sensing modes. At the generation mode, the interrogator transmits two microwave signals; one is amplitude modulated with the ultrasound excitation signal while the other is a continuous-wave carrier signal. Once received by the wireless actuator, the amplitude modulated signal is demodulated using the carrier signal to recover the ultrasound excitation signal, which is then supplied to a piezoelectric wafer actuator for ultrasound generation. Subsequently, the interrogator is switched to the sensing mode by transmitting a carrier signal with a different frequency. Once received by the wireless sensor, this carrier signal is modulated with the ultrasound sensing signal acquired by the piezoelectric wafer sensor to produce an amplitude modulated microwave signal, which can then be wirelessly transmitted and demodulated by the interrogator to recover the original ultrasound sensing signal. The principle and implementation of the wireless ultrasound pitch–catch system as well as the data processing of the wirelessly received sensing signal are described. Experiment results validating wireless ultrasound generation and sensing from a distance of 0.5 m are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.