Abstract

Simultaneous transmit and receive (STAR) allows full-duplex operation of a radio, which leads to doubled capacity for a given bandwidth. A circulator with high-isolation between transmit and receive ports, and low-loss from the antenna to receive port is typically required for achieving STAR. Conventional circulators do not offer wideband performance. Although wideband circulators have been proposed using parametric, switched delay-line/capacitor, and N-path filter techniques using custom integrated circuits, these magnet-free devices have non-linearity, noise, aliasing, and switching noise injection issues. In this paper, a STAR front-end based on passive linear microwave circuit is proposed. Here, a dummy antenna located inside a miniature RF-silent absorption chamber allows circulator-free STAR using simple COTS components. The proposed approach is highly-linear, free from noise, does not require switching or parametric modulation circuits, and has virtually unlimited bandwidth only set by the performance of COTS passive microwave components. The trade-off is relatively large size of the miniature RF-shielded chamber, making this suitable for base-station side applications. Preliminary results show the measured performance of Tx/Rx isolation between 25-60 dB in the 1.0-3.0 GHz range, and 50-60 dB for the 2.4-2.7 GHz range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.