Abstract

In situ measurement of multiple pollutants coexisting in sediment porewater is an essential step in comprehensively assessing the bioavailability and risk of pollutants, but to date, this needs to be better developed. In this study, a passive sampler, consisting of an “I-shaped” supporting frame and inorganic/organic sampling units, incorporating equilibrium dialysis theory and kinetic/equilibrium sorption principle, was developed for the synchronous measurement of inorganic (e.g., phosphorus and metal(loid)s) and organic pollutants (e.g., parent and substituted PAHs). The equilibrium time and sampling rates were explored in laboratory tests to support in situ application. Profiles of pollutants in porewater within a vertical resolution of centimeters, i.e., 1 cm and 2 cm for inorganic and organic pollutants, respectively, were obtained by field deployment of the sampler for further estimation of diffusive fluxes across the sediment-water interface. The results suggested that the role of sediments for a specific pollutant may change (e.g., from “sink” to “source”) during the sampling time. This study demonstrated the feasibility of synchronous measurement of inorganic and organic pollutants in sediment porewater by the passive sampler. In addition, it provided new insight for further investigation into the combined pollution effects of various pollutants in sediments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.