Abstract
PurposeThe purpose of this paper is to detect the existence of unknown wireless devices which could result negative means to the privacy. The perceptual layer of internet of things (IoTs) suffers the most significant privacy disclosing because of limited hardware resources, huge quantity and wide varieties of sensing equipment. Determining whether there are unknown wireless devices in the communicating environment is an effective method to implement the privacy protection for the perceptual layer of IoTs.Design/methodology/approachThe authors use horizontal hierarchy slicing (HHS) algorithm to extract the morphology feature of signals. Meanwhile, partitioning around medoids algorithm is used to cluster the HHS curves and agglomerative hierarchical clustering algorithm is utilized to distinguish final results. Link quality indicator (LQI) data are chosen as the network parameters in this research.FindingsNowadays data encryption and anonymization are the most common methods to protect private information for the perceptual layer of IoTs. However, these efforts are ineffective to avoid privacy disclosure if the communication environment exists unknown wireless nodes which could be malicious devices. How to detect these unknown wireless devices in the communication environment is a valuable topic in the further research.Originality/valueThe authors derive an innovative and passive unknown wireless devices detection method based on the mathematical morphology and machine learning algorithms to detect the existence of unknown wireless devices which could result negative means to the privacy. The simulation results show their effectiveness in privacy protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pervasive Computing and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.