Abstract

A passive lossless snubber cell and its dual structure for reducing the switching loss of a range of switching converters are presented. The proposed snubber cell has several advantages over existing snubbering techniques. First, it provides zero-current-switching and zero-voltage-switching conditions for turning on and off, respectively, the switch over a wide load range. Second, it does not introduce extra voltage stress on the switch. Third, by taking the ripple current through the switch into account, the peak switch current during the snubber resonance period is designed to be less than the designed switch current without the snubber. Hence, the proposed snubber does not introduce extra current stress on the switch. The operating principle, procedure of designing the values of the components, and soft-switching range of the snubber will be given. The connections of the snubber cells to different switching converters will be illustrated. A performance comparison among the proposed snubber and a prior-art snubber will be addressed. The proposed snubber has been successfully applied to an example of a 200-W, 380-V/24-V, 100-kHz two-switch flyback converter. Experimental results are in good agreement with the theoretical predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.