Abstract

This paper presents the design and analysis of a passive body weight (BW)-support lower extremity exoskeleton (LEE) with compliant joints to relieve compressive load in the knee. The biojoint-like mechanical knee decouples human gait into two phases, stance and swing, by a dual snap fit. The knee joint transfers the BW to the ground in the stance phases and is compliant to free the leg in the swing phases. Along with a leg dynamic model and a knee biomechanical model, the unmeasurable knee internal forces are simulated. The concept feasibility and dynamic models of the passive LEE design have been experimentally validated with measured plantar forces. The reduced knee forces confirm the effectiveness of the LEE in supporting human BW during walking and also provide a basis for computing the internal knee forces as a percentage of BW. Energy harvested from the hip spring reveals that the LEE can save human walking energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call