Abstract

Abstract The operability of the axial compressor is generally limited by endwall flows; either at the casing mainly due to the tip leakage flows or at the hub mainly due to three-dimensional corner separations. Therefore, it is crucial to improve flows near the endwalls to enhance the operability of the compressor. Based on a last-stage with cantilevered stator vanes, a small endwall slot was introduced to a rotor blade to mitigate the hub corner separation and maximize the aerodynamic operating range of axial compressors by natural aspiration. The developed flow control technology is numerically analyzed based on the in-house High-Speed Research Compressor (HSRC) which, in turn, represents the rear stage of a modern compressor. This compressor was predicted to stall due to hub corner separation on a rotor blade based on multistage CFD analysis. A small spanwise endwall slot, connecting the pressure side and the suction side of a compressor rotor blade, was introduced near the hub to provide the by-pass flows from the pressure side to the suction side (see Figure 1). This naturally-aspirated jet significantly reduced the three-dimensional corner separation which generally occurs where the suction side meets the hub. The substantial reduction of the three-dimensional corner separation, in turn, improved the aerodynamic stall margin of the compressor. The benefit is accomplished because the low momentum region near the hub was energized due to the naturally-aspirated jet through the endwall slot and the radial migration of the low momentum flow on the suction side was significantly reduced. A systematic parametric study was conducted to better understand the flow details and optimize the flow control without sacrificing aerodynamic efficiency. It was discovered that a very small slot, smaller than 10% of span, located near the endwall, was sufficient to have a more than 6% improvement of the stall margin with a negligible efficiency penalty (less than 0.1%). The naturally-aspirated flow through the small slot eliminates the source of the corner separation at the hub platform by strengthening the flow near the hub. This, in turn, reduces the overall aerodynamic blockage by decreasing the radial migration of the low momentum flow over a third of the span. Finally, evaluations of the mechanical strength and structural dynamics of slotted rotor blades, as well as the aerodynamic impact in a multi-stage environment were conducted and its results were discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call