Abstract
Splicing image forgery detection has become a significant research subject in multimedia forensics and security due to its widespread use and its hard detection. Many algorithms have already been executed on the image splicing. The existing algorithms may be affected by some problems, such as high feature dimensionality and low accuracy with high false positive rates. In this paper, an algorithm based on deep learning approach and wavelet transform is proposed to detect the spliced image. In the deep learning approach, convolutional neural network (CNN) is employed to automatically extract features from the spliced image. CNN is applied and then discrete wavelet transform (DWT) is used. Support vector machine is used later for classification. Additional experiments are performed. That is, discrete cosine transform replaces DWT and then principal component analysis is applied. The proposed algorithm is evaluated on a publicly available image splicing datasets (CASIA v1.0 and CASIA v2.0). It achieves high accuracy while using a relatively low-dimensional feature vector. Our results demonstrate that the proposed algorithm is effective and accomplishes better performance for detecting the spliced image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.