Abstract

In higher plants, one of the major components of developmental processes is cell division. The cell division cycle in plants is controlled by cyclins and cyclin-dependend kinases. Nutrient and hormonal signals can influence the roles that D-type cyclins play in the G1-to-S phase transition. Auxins and cytokinins are long known to be important plant hormones controlling plant growth. Additionally, as sucrose is the major transported carbon source in higher plants, it is possible that it plays a major role in cell division. To access the molecular aspects of the effect of auxin, cytokinin and sucrose on the regulation of cell cycle machinery and plant development, we cloned a Passiflora morifolia putative homolog to a D-type cyclin, PmCYCD1, which showed high sequence similarity to other known plant D-type cyclins. We examined the expression patterns of PmCYCD1 during callus induction and growth in in vitro conditions. We observed incremented expression levels of PmCYCD1 correlated to increasing concentrations of sucrose, α-naphthalene acetic acid and 6-benzyladenine in the culture medium. Additionally, the results of in situ hybridization experiments indicated a dynamic spatial expression pattern for PmCYCD1 during callus growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.