Abstract
Sinorhizobium meliloti synthesizes a linear mixed-linkage (1 → 3)(1 → 4)-β-d-glucan (ML β-glucan, MLG) in response to high levels of cyclic diguanylate (c-di-GMP). Two proteins BgsA and BgsB are required for MLG synthesis, BgsA being the glucan synthase which is activated upon c-di-GMP binding to its C-terminal domain. Here we report that the product of bgrR (SMb20447) is a diguanylate cyclase (DGC) that provides c-di-GMP for the synthesis of MLG by BgsA. bgrR is the first gene of a hexacistronic bgrRSTUWV operon, likely encoding a partner-switching regulatory network where BgrR is the final target. Using different approaches, we have determined that the products of genes bgrU (containing a putative PP2C serine phosphatase domain) and bgrW (with predicted kinase effector domain), modulate the phosphorylation status and the activity of the STAS domain protein BgrV. We propose that unphosphorylated BgrV inhibits BgrR DGC activity, perhaps through direct protein-protein interactions as established for other partner switchers. A bgrRSTUWV operon coexists with MLG structural bgsBA genes in many rhizobial genomes but is also present in some MLG non-producers, suggesting a role of this partner-switching system in other processes besides MLG biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.