Abstract

The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a fuzzy clustering algorithm to partitioning symbolic interval data. The proposed method furnish a fuzzy partition and a prototype (a vector of intervals) for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method use a suitable adaptive Mahalanobis disance defined on vectors of intervals. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.