Abstract

The efficient partitioning of a finite-dimensional space by a decision tree, each node of which corresponds to a comparison involving a single variable, is a problem occurring in pattern classification, piecewise-constant approximation, and in the efficient programming of decision trees. A two-stage algorithm is proposed. The first stage obtains a sufficient partition suboptimally, either by methods suggested in the paper or developed elsewhere; the second stage optimizes the results of the first stage through a dynamic programming approach. In pattern classification, the resulting decision rule yields the minimum average number of calculations to reach a decision. In approximation, arbitrary accuracy for a finite number of unique samples is possible. In programming decision trees, the expected number of computations to reach a decision is minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.