Abstract

Anthropogenic heat (AH) generated by human activities has a major impact on urban and regional climate. Accurately estimating anthropogenic heat is of great significance for studies on urban thermal environment and climate change. In this study, a gridded anthropogenic heat flux (AHF) estimation scheme was constructed based on socio-economic data, energy-consumption data, and multi-source remote sensing data using a partition modeling method, which takes into account the regional characteristics of AH emission caused by the differences in regional development levels. The refined AHF mapping in China was realized with a high resolution of 500 m. The results show that the spatial distribution of AHF has obvious regional characteristics in China. Compared with the AHF in provinces, the AHF in Shanghai is the highest which reaches 12.56 W·m−2, followed by Tianjin, Beijing, and Jiangsu. The AHF values are 5.92 W·m−2, 3.35 W·m−2, and 3.10 W·m−2, respectively. As can be seen from the mapping results of refined AHF, the high-value AHF aggregation areas are mainly distributed in north China, east China, and south China. The high-value AHF in urban areas is concentrated in 50–200 W·m−2, and maximum AHF in Shenzhen urban center reaches 267 W·m−2. Further, compared with other high resolution AHF products, it can be found that the AHF results in this study have higher spatial heterogeneity, which can better characterize the emission characteristics of AHF in the region. The spatial pattern of the AHF estimation results correspond to the distribution of building density, population, and industry zone. The high-value AHF areas are mainly distributed in airports, railway stations, industry areas, and commercial centers. It can thus be seen that the AHF estimation models constructed by the partition modeling method can well realize the estimation of large-scale AHF and the results can effectively express the detailed spatial distribution of AHF in local areas. These results can provide technical ideas and data support for studies on surface energy balance and urban climate change.

Highlights

  • Intensive human activities produce large amounts of anthropogenic heat (AH) released into the atmosphere

  • The refined anthropogenic heat flux (AHF) mapping with a resolution of 500 m was realized in China based on the model

  • The refined AHF mapping in China in the year 2016 is achieved in this study

Read more

Summary

Introduction

Intensive human activities produce large amounts of anthropogenic heat (AH) released into the atmosphere. A large amount of AH emissions will increase the urban heat island effect. Ichinose et al found that the AH emissions increased the heat island intensity by 1–1.5 ◦C in Tokyo [1]. Fan and Sailor showed that AH emissions in Philadelphia can make the heat island intensity increase 2–3 ◦C in a winter night [2]. The increase of temperature will have a series of effects on surface energy conversion and the atmospheric boundary layer [3,4], and further affect local air quality [5]. Young et al investigated the effects of anthropogenic heat on ozone air quality during the summer in the Seoul metropolitan area

Objectives
Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.