Abstract

This paper proposes a novel multi-objective model for an unrelated parallel machine scheduling problem considering inherent uncertainty in processing times and due dates. The problem is characterized by non-zero ready times, sequence and machine-dependent setup times, and secondary resource constraints for jobs. Each job can be processed only if its required machine and secondary resource (if any) are available at the same time. Finding optimal solution for this complex problem in a reasonable time using exact optimization tools is prohibitive. This paper presents an effective multi-objective particle swarm optimization (MOPSO) algorithm to find a good approximation of Pareto frontier where total weighted flow time, total weighted tardiness, and total machine load variation are to be minimized simultaneously. The proposed MOPSO exploits new selection regimes for preserving global as well as personal best solutions. Moreover, a generalized dominance concept in a fuzzy environment is employed to find locally Pareto-optimal frontier. Performance of the proposed MOPSO is compared against a conventional multi-objective particle swarm optimization (CMOPSO) algorithm over a number of randomly generated test problems. Statistical analyses based on the effect of each algorithm on each objective space show that the proposed MOPSO outperforms the CMOPSO in terms of quality, diversity and spacing metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.