Abstract
Feature selection refers to data reduction process by selecting the minimal subsets of features which are effective to preserve the meaning of the features and rarely dependent on other features. Fuzzy-rough set-based feature selection is a beneficial technique which not only satisfies these conditions but also can deal with imprecision and uncertainty. Many methods have been proposed for feature selection problem; however, most of them are able to find only one minimal data reduction while a dataset can have several minimal reducts. In this paper, we propose a Fuzzy-rough set-based feature selection, using particle swarm optimization (PSO) technique, able to find various minimal data reductions. The main contribution of this paper includes using a ring topology for a binary version of the PSO, utilizing the fuzzy-rough dependency degree as fitness. In addition, we present a new velocity updating rule. In order to obtain the efficiency of the proposed method, we compare it with some other meta-heuristic methods using 10 well-known UCI data sets. The results show that the performance of the fuzzy rough-based feature selection can be improved using this method for finding various data reductions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.