Abstract

The particle Swarm Optimization (PSO) algorithm, as one of the most effective search algorithm inspired from nature, is successfully applied in a variety of fields and is demonstrating fairly immense potential for development. Recently, researchers are investigating the use of PSO algorithm in the realm of personalized recommendation systems for providing tailored suggestions to users. Collaborative filtering (CF) is the most promising technique in recommender systems, providing personalized recommendations to users based on their previously expressed preferences and those of other similar users. However, data sparsity and prediction accuracy are the major concerns related to CF techniques. In order to handle these problems, this paper proposes a novel approach to CF technique by employing fuzzy case-based reasoning (FCBR) augmented with PSO algorithm, called PSO/FCBR/CF technique. In this method, the PSO algorithm is utilized to estimate the features importance and assign their weights accordingly in the process of fuzzy case-based reasoning (FCBR) for the computation of similarity between users and items. In this way, PSO embedded FCBR algorithm is applied for the prediction of missing values in user-item rating matrix and then CF technique is employed to generate recommendations for an active user. The experimental results clearly reveal that the proposed scheme, PSO/FCBR/CF, deals with the problem of sparsity as well as improves the prediction accuracy when compared with other state of the art CF schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.