Abstract
In this paper, we have presented a new particle swarm optimization based multivariate fuzzy time series forecasting method. This method assumes five-factors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is proved that our proposed method perform better than many existing fuzzy time series forecasting methods. The interest of this paper centers in applying swarm intelligence approaches in forecasting related problems. The dataset is taken from National Institute of Statistics, Belgium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.