Abstract
We propose a novel deterministic particle method to numerically approximate the Landau equation for plasmas. Based on a new variational formulation in terms of gradient flows of the Landau equation, we regularize the collision operator to make sense of the particle solutions. These particle solutions solve a large coupled ODE system that retains all the important properties of the Landau operator, namely the conservation of mass, momentum and energy, and the decay of entropy. We illustrate our new method by showing its performance in several test cases including the physically relevant case of the Coulomb interaction. The comparison to the exact solution and the spectral method is strikingly good maintaining 2nd order accuracy. Moreover, an efficient implementation of the method via the treecode is explored. This gives a proof of concept for the practical use of our method when coupled with the classical PIC method for the Vlasov equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.