Abstract

The excitation of harmonic waves by an electron beam is studied with electrostatic simulations. The results suggest that the harmonic waves are excited during the linear stage of the simulation and are developed in the nonlinear stage. First, the Langmuir waves (LWs) are excited by the beam electrons. Then the coupling of the forward propagating LWs and beam modes will excite the second harmonic waves. The third harmonic waves will be produced if the lower velocity side of the beam still has a positive velocity gradient. The beam velocity decreases at the same time, which provides the energy for wave excitation. We find that it is difficult to excite the harmonic waves with the increase of the thermal velocity of the beam electrons. The beam electrons will be heated after waves are excited, and then the part of the forward propagating LWs will turn into electron acoustic waves under the condition with a large enough intensity of beam electrons. Moreover, the action of ions hardly affects the formation of harmonic waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.