Abstract
In this paper, we study the flow physics produced by a thin rigid lamina oscillating in an otherwise quiescent viscous fluid. Particle image velocimetry (PIV) is used to extract the flow kinematics, which is, in turn, utilized to reconstruct the pressure distribution around the lamina through the integration of Navier-Stokes equations. The hydrodynamic loading experienced by the lamina is ultimately estimated from PIV data to investigate added mass and fluid damping phenomena. Experiments are conducted for varying Reynolds and Keulegan-Carpenter numbers to elucidate the relative weight of inertial, convective, and viscous phenomena on the resulting flow physics. In agreement with prior numerical studies, experimental results demonstrate that increasing the Reynolds and the Keulegan-Carpenter numbers results into the formation of coherent structures that are shed at the edges of the lamina and advected by the flow. This phenomenon is associated with nonlinearities in the hydrodynamic loading, whereby fluid damping is found to increase nonlinearly with the oscillation of the lamina.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.