Abstract
In recent years there has been a growing interest on particle filters for solving tracking problems, thanks to their applicability to problems with continuous, non-linear and non-Gaussian state spaces, which makes them more suited than hidden Markov models, Kalman filters and their derivations, in many real world tasks. Applications include video surveillance, sensor fusion, tracking positions and behaviors of moving objects, situation assessment in civil and bellic scenarios, econometric and clinical data series analysis. In many environments it is possible to recognize classes of similar entities, like pedestrians or vehicles in a video surveillance system, or commodities in econometric. In this paper, a relational particle filter for tracking an unknown number of objects is presented which exploits possible interactions between objects to improve the quality of filtering. We will see that taking into account relations between objects will ease the tracking of objects in presence of occlusions and discontinuities in object dynamics. Experimental results on a benchmark data set are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Mathematical Modelling and Algorithms in Operations Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.