Abstract

Positioning is envisioned as an essential enabler of future fifth generation (5G) mobile networks due to the massive number of use cases that would benefit from knowing users’ positions. In this work, we propose a particle filter-based reinforcement learning (PFRL) approach for the robust wireless indoor positioning system. Our algorithm integrates information of indoor zone prediction, inertial measurement units, wireless radio-based ranging, and floor plan into an particle filter. The zone prediction method is designed with an ensemble learning algorithm by integrating individual discriminative learning methods and Hidden Markov Models. Further, we integrate the particle filter approach with a reinforcement learning-based resampling method to provide robustness against localization failure problems such as the kidnapping robot problem. The PFRL approach is validated on a two-tier architecture, in which distributed machine learning tasks are hosted at client and edge layer. Experiment results show that our system outperforms traditional terminal-based approaches in both stability and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.