Abstract

The posterior Cramer-Rao lower bound (PCRLB) derived in [1] provides a bound on the mean square error (MSE) obtained with any nonlinear state filter. Computing the PCRLB involves solving complex, multi-dimensional expectations, which do not lend themselves to an easy analytical solution. Furthermore, any attempt to approximate it using numerical or simulation-based approaches require a priori access to the true states, which may not be available, except in simulations or in carefully designed experiments. To allow recursive approximation of the PCRLB when the states are hidden or unmeasured, a new approach based on sequential Monte-Carlo (SMC) or particle filters (PFs) is proposed. The approach uses SMC methods to estimate the hidden states using a sequence of the available sensor measurements. The developed method is general and can be used to approximate the PCRLB in nonlinear systems with non-Gaussian state and sensor noise. The efficacy of the developed method is illustrated on two simulation examples, including a practical problem of ballistic target tracking at reentry phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.