Abstract
SUMMARYA new discrete element model to deal with rapid deformation and fracture of flat fibrous materials is derived. The method is based on classical mechanical theories and is a combination of traditional particle dynamics and nonlinear engineering beam theory. It is assumed that a fiber can be seen as a beam that is represented by discrete particles, which are moving according to Newton's laws of motion. Damage is dealt with by fracture of fiber‐segments and fiber–fiber bonds when the potential energy of a segment or bond exceeds the critical fracture energy. This allows fractures to evolve as a result of material properties only. To validate the model, four examples are shown and compared with analytical results found in literature. Copyright © 2013 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.