Abstract

A new model is proposed for the structure and properties of porous metal oxide scales (aka Chalk River Unidentified Deposits (CRUD)) observed on the nuclear fuel rod cladding in Pressurized Water Reactors (PWR). The model is based on the thermodynamically-driven expansion of agglomerated octahedral nickel ferrite particles in response to pH and temperature changes in the CRUD. The model predicts that porous nickel ferrite with internal {111} surfaces is a thermodynamically stable structure under PWR conditions even when the free energy of formation of bulk nickel ferrite is positive. This explains the pervasive presence of nickel ferrite in CRUD, observed CRUD microstructures, why CRUD maintains its porosity, and variations in porosity within the CRUD observed experimentally. This model is a stark departure from decades of conventional wisdom and detailed theoretical analysis of CRUD chemistry, and defines new research directions for model validation, and for understanding and ultimately controlling CRUD formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call