Abstract
In this article, the robust finite-horizon state estimation problem is investigated for a class of time-varying complex networks (CNs) under the random access protocol (RAP) through available measurements from only a part of network nodes. The underlying CNs are subject to randomly occurring uncertainties, randomly occurring multiple delays, as well as sensor saturations. Several sequences of random variables are employed to characterize the random occurrences of parameter uncertainties and multiple delays. The RAP is adopted to orchestrate the data transmission at each time step based on a Markov chain. The aim of the addressed problem is to design a series of robust state estimators that make use of the available measurements from partial network nodes to estimate the network states, under the RAP and over a finite horizon, such that the estimation error dynamics achieves the prescribed H∞ performance requirement. Sufficient conditions are provided for the existence of such time-varying partial-node-based H∞ state estimators via stochastic analysis and matrix operations. The desired estimators are parameterized by solving certain recursive linear matrix inequalities. The effectiveness of the proposed state estimation algorithm is demonstrated via a simulation example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.