Abstract
Abstract In the first part of this paper, we consider a partially overdetermined mixed boundary value problem in space forms and generalize the main result in [11] to the case of general domains with partial umbilical boundary in space forms. Precisely, we prove that a partially overdetermined problem in a domain with partial umbilical boundary admits a solution if and only if the rest part of the boundary is also part of an umbilical hypersurface. In the second part of this paper, we prove a Heintze–Karcher–Ros-type inequality for embedded hypersurfaces with free boundary lying on a horosphere or an equidistant hypersurface in the hyperbolic space. As an application, we show an Alexandrov-type theorem for constant mean curvature hypersurfaces with free boundary in these settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.