Abstract
Okubo–Zweig–Iizuka-allowed partial decay widths, masses, and total decay width of charmonium states are studied in a nonrelativistic coupled-channel framework based on microscopic effective quark interactions. With the help of the complex scale transformation, the coupled channel equation is easily solved under the proper boundary condition for resonances. The obtained result as a whole is very successful and encouraging for the traditional charmonium states including ψ(4040) whose features of mass and partial decay widths have been argued historically. The coupling mechanisms of these states are investigated by reducing artificially the channel coupling strengths little by little and finally turning the coupling off. The situations turn out to be quite different from what we would have naively supposed. Other solutions than the traditional charmonium states were obatined at the same time. Some of them are discussed in relation with new particles observed recently.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.