Abstract

A method of partial scan design is presented in which the selection of scan flip-flops is aimed at breaking up the cyclic structure of the circuit. Experimental data are given to show that the test generation complexity may grow exponentially with the length of the cycles in the circuit. This complexity grows only linearly with the sequential depth. Graph-theoretic algorithms are presented to select a minimal set of flip-flops for eliminating cycles and reducing the sequential depth. Tests for the resulting circuit are generated by a sequential logic test generator. An independent control of the scan clock allows insertion of scan sequences within the vector sequence produced by the test generator. An independent control of the scan clock allows insertion of scan sequences within the vector sequences produced by the test generator. 98% fault coverage is obtained for a 5000-gate circuit by scanning just 5% of the flip-flops. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.