Abstract

We introduce a partial proximal point algorithm for solving nuclear norm regularized matrix least squares problems with equality and inequality constraints. The inner subproblems, reformulated as a system of semismooth equations, are solved by an inexact smoothing Newton method, which is proved to be quadratically convergent under a constraint non-degeneracy condition, together with the strong semi-smoothness property of the singular value thresholding operator. Numerical experiments on a variety of problems including those arising from low-rank approximations of transition matrices show that our algorithm is efficient and robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.