Abstract

A long-standing belief is that aging (senescence) is the result of stochastic damage accumulation. Alternatively, senescent pathology may also result from late-life, wild-type gene action (i.e., antagonistic pleiotropy, as argued by Williams) leading to non-adaptive run-on of developmental programs (or quasi-programs) (as suggested more recently by Blagosklonny). In this study, we use existing and new data to show how uterine tumors, a prominent form of senescent pathology in the nematode Caenorhabditis elegans, likely result from quasi-programs. Such tumors develop from unfertilized oocytes which enter the uterus and become hypertrophic and replete with endoreduplicated chromatin masses. Tumor formation begins with ovulation of unfertilized oocytes immediately after exhaustion of sperm stocks. We show that the timing of this transition between program and quasi-program (i.e., the onset of senescence), and the onset of tumor formation, depends upon the timing of sperm depletion. We identify homology between uterine tumors and mammalian ovarian teratomas, which both develop from oocytes that fail to mature after meiosis I. In teratomas, futile activation of developmental programs leads to the formation of differentiated structures within the tumor. We report that older uterine tumors express markers of later embryogenesis, consistent with teratoma-like activation of developmental programs. We also present evidence of coupling of distal gonad atrophy to oocyte hypertrophy. This study shows how the Williams Blagosklonny model can provide a mechanistic explanation of this component of C. elegans aging. It also suggests etiological similarity between teratoma and some forms of senescent pathology, insofar as both are caused by quasi-programs.

Highlights

  • Aging is the main cause of mortal disease worldwide, the causes of senescence remain poorly understood

  • Can one learn about human disease etiology by studying senescent pathology in C. elegans? This depends on the existence of shared pathophysiologies

  • Background reading led us to identify a mammalian pathology with an etiology resembling that of C. elegans uterine tumors: ovarian teratoma

Read more

Summary

Introduction

Aging (i.e., senescence) is the main cause of mortal disease worldwide, the causes of senescence (i.e., the etiologies of diseases of aging) remain poorly understood. The presence of genes where loss of function increases lifespan implies that wild-type gene action is a cause of aging. This is consistent with Williams’ evolutionary principle of antagonistic pleiotropy (AP): that natural selection can favor alleles that enhance fitness in early life even if they promote pathology later in life. This can occur because natural selection declines with age after the onset of reproduction.[3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call