Abstract

Dynamic mixture distributions are convenient models for highly skewed and heavy-tailed data. However, estimation has proved to be challenging and computationally expensive. To address this issue, we develop a more parsimonious model, based on a one-parameter weight function given by the exponential cumulative distribution function. Parameter estimation is carried out via maximum likelihood, approximate maximum likelihood and noisy cross-entropy. Simulation experiments and real-data analyses suggest that approximate maximum likelihood is the best method in terms of RMSE, albeit at a high computational cost. With respect to the version of the dynamic mixture with weight equal to the two-parameter Cauchy cumulative distribution function, the reduced flexibility of the present model is more than compensated by better statistical and computational properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.