Abstract
Striking a balance between diverse constraints and conflicting objectives is one of the most crucial issues in solving constrained multi-objective optimization problems (CMOPs). However, it remains challenging to existing methods, due to the reduced search space caused by the constraints. For this issue, this paper proposes a Pareto fronts relationship identification-based two-stage constrained evolutionary algorithm called RITEA, which balances objective optimization and constraint satisfaction by identifying and utilizing the relationship between the unconstrained Pareto front (UPF) and the constrained Pareto front (CPF). Specifically, the evolutionary process is divided into two collaborative stages: training stage and reinforcement stage. In the training stage, a relationship identification method is developed to estimate the relationship between UPF and CPF, which guides the population search direction. In the reinforcement stage, the corresponding evolutionary strategies are designed based on the identified relationship to enhance the accurate search on the CPF. Furthermore, a dynamic preference fitness function (termed DPF) is designed to adaptively maintain the balance of search preference between convergence and diversity. Compared to seven state-of-the-art algorithms on 36 benchmark CMOPs in three popular test suites, RITEA obtains 77.8% of the best IGD values and 66.7% of the best HV values. The experimental results show that RITEA exhibits highly competitively when dealing with CMOPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.